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The penetration of a magnetic field into a cylindrical plasma of a density that varies both radially 
and axially is studied. The magnetic field penetrates rapidly due to the Hall field, along constant 
n? lines (n is the dimensionless plasma density and t is the dimensionless radial coordinate). 
For a plasma that conducts between two cylindrical electrodes, it is shown that there is magnetic 
field penetration for both positive and negative polarity cases as long as there is penetration 
along the electrodes. The magnetic field evolution is found, analytically and numerically, for 
different time behaviors of the magnetic field at the boundaries. Ion velocities are also calculated. 

I. INTRODUCTION 

Fast magnetic field penetration into a plasma due to 
the Hall field has been the subject of many recent studies. 
In particular, it has been shown that the penetration can 
result from a density gradient in a planar geometry,’ or 
from a magnetic field curvature in cylindrical geometry.* 
In order for the fast magnetic field penetration to be the 
dominant mechanism, plasma pushing by the magnetic 
field has to be negligible. This occurs when the ion speed is 
smaller than the field penetration speed (defined later in 
the text), or equivalently L < c/W,i ( L is the length scale of 
the density gradient or the radius of curvature of the mag- 
netic field and c/Wpi is the ion skin depth).3 On the other 
hand, if the ion speed is larger than the field penetration 
speed, or equivalently L > c/W,i, the plasma pushing is 
dominant.4 Both cases, the density gradient case and the 
cylindrical magnetic field curvature case lead to similar 
equations for the evolution of the magnetic field, when 
equivalent parameters are identified. From the assumption 
of quasineutrality, it is required that L > c/w,, (c/w,, is the 
electron skin depth). The assumptions of quasineutrality 
on one hand and negligible ion motion on the other hand 
require the relevant scale length of the model to satisfy 
C/Up < L < C/CO@ * 

In the previously mentioned cases, the resistivity is 
assumed small, so that the magnetic field diffusion is much 
slower than the magnetic field penetration. This is the case 
when q/~In< 1 (n is the collisional resistivity and 
qH= B/N, is the “Hall resistivity,” B is the magnetic 
field, N is the plasma density, -e is the electron charge, 
and c is the light velocity in vacuum). The magnetic field 
penetrates in a direction perpendicular to the density gra- 
dient in the planar case or in the axial direction (perpen- 
dicular to the radial direction) in the cylindrical case. The 
penetration is in the form of a shock wave, where the shock 
structure depends on the resistivity. The velocity of prop- 
agation and the amount of dissipation, however, do not 
depend on the resistivity.5 In addition to the Hall-induced 
penetration in which the resistivity determines the shock 
structure,‘-3S5-9 recent studies have treated the penetration 
in the case in which the resistivity is very small and the 
electron inertia is dominant.‘C’3 

Motivated by the question of the magnetic field pene- 
tration into the plasma in the plasma opening switch 
(POS),i4~i5 we concentrate on the cylindrical case. We 
study the penetration of the magnetic field into a hollow 
cylindrical plasma that fills the gap between two concentric 
cylindrical conductors at some axial location. In our pre- 
vious studies we assumed that the plasma density was uni- 
form. We showed that if the cathode is at the inner con- 
ductor (negative polarity), the magnetic field penetrates 
axially into the plasma from the vacuum. If the cathode is 
at the outer conductor (positive polarity), there is no field 
penetration. Moreover, if the plasma is initially magne- 
tized, then the field is spontaneously expelled. In both 
cases, since the density is uniform, the evolution of the 
magnetic field near the electrodes does not affect much the 
evolution of the magnetic field in the bulk of the plasma.’ 

In the present paper, we assume that the (dimension- 
less) plasma density n is not uniform. The density distri- 
bution is assumed to be realistic and to decrease axially 
toward the vacuum-plasma boundary. We also allow a 
radial density variation. We show that the magnetic field 
evolution is along constant n? lines. The uniform density 
case is therefore only a special case, in which the constant 
n? lines are parallel to the axial direction. We show that in 
contrast to the uniform density cylindrical case, in the non- 
uniform density cylindrical case the magnetic field pene- 
trates for both switch polarities, as long as there is fast 
magnetic field penetration along the electrodes. This is be- 
cause the constant n? lines are not parallel to the axial 
direction, but rather end at the neighborhood of the elec- 
trodes. If the penetration along the anode is faster (as in 
our two-dimensional study’), the major penetration of the 
magnetic field for both polarities occurs from the anode. In 
a recent paper we have described qualitatively the penetra- 
tion of the magnetic field into a plasma of a realistic density 
profile. l6 

We assume that the resistivity is small enough so that 
the dominant process is the Hall-induced penetration along 
the n? contour lines. On the other hand, the resistivity is 
assumed to be not too small, so that the fluid description is 
still correct and the electron inertia can be neglected. By 
neglecting the resistive term, we obtain a hyperbolic equa- 
tion that is solved by calculating its characteristics. The 
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solutions that we find have shock discontinuities and also 
discontinuities at the plasma boundaries. Within our model 
the discontinuities can be removed by adding finite resis- 
tivity. In reality, there could be non-neutral sheaths that 
remove the discontinuities. i7 The n? contour lines are the 
projections of the characteristics onto the (r,z) plane (z is 
the dimensionless axial coordinate). Since the n? contour 
lines intersect the electrodes, the evolution of the magnetic 
field in the neighborhood of the electrodes is crucial to the 
evolution in the bulk of the plasma. A correct treatment of 
the evolution near the electrodes involves an appropriate 
treatment of the non-neutral sheaths. Elaborate models 
were developed for that purpose. Common to these models 
is the prediction of the fast penetration of the magnetic 
field along the cathode’4”5~‘7-19 or along the anode.9,20 
Thus, here we assume that the magnetic field does pene- 
trate into the plasma along the electrodes by some mech- 
anism. 

We calculate analytically the penetration of the mag- 
netic field for various time behaviors of the magnetic field 
at the plasma boundaries. First, we consider a magnetic 
field that is fast rising to a constant value (step function in 
time). We study the time evolution of the magnetic field 
and the steady state that is reached. We then study the case 
in which the magnetic field is linearly rising in time. Fi- 
nally, a linearly rising magnetic field that is followed by a 
decreasing magnetic field is considered. Examples are given 
for both polarities. Numerical results are given for negative 
polarity and finite resistivity. In addition, we calculate the 
ion velocities that result from the Hall electric field, for 
such parameters that the ion displacement is small, consis- 
tent with the assumptions of the model. Also, the velocity 
of the wave propagation is shown to be greater than the 
Alfven velocity V,, satisfying the requirement3 for the 
plasma pushing to be negligible. All the examples given in 
this paper are relevant only for the short conduction time 
POS. 

In Sec. II the model is presented and the evolution 
along constant n? density lines is shown, In Sec. III the 
uniform density case and the nonuniform density case are 
compared briefly. In Sec. IV a realistic density profile is 
described. Analytical solutions for various time behaviors 
of the magnetic field at the boundaries are given in Sec. V. 
In Sec. VI the ion velocities are calculated under the as- 
sumption that they are accelerated by an electric field that 
results mainly from the Hall term. Finally, Sec. VII is 
dedicated to conclusions. Some calculations are left for an 
appendix. 

II. THE MODEL 

We assume that the main process is the fast magnetic 
field penetration into the plasma due to the Hall field and 
that the ion motion can be neglected. We also assume that 
the electron inertia and the displacement current can be 
neglected, and that the plasma is cold. Elsewhere,’ the 
effect of electron heating is studied for a particular case of 
our model. The equations describing our model are Fara- 
day’s law, 

VXE+B, 
Ampere’s law, 

VXB= (47r/c)J, 

and the momentum equation of the electron (Ohm’s law), 

E=qJ+ (JXB)/eNc, 

where E and B are the electric and magnetic fields and J is 
the current density. We also assumed that the scale length 
of the density gradient and the radius are smaller than 
c/opi, otherwise the main process is plasma pushing by the 
magnetic field. In this case the ions barely move and 
J= -eNV, and &N=O (V, is the electron flow velocity). 
In order to also neglect the electron inertia we assumed 
that the plasma is collisional enough. 

The geometry assumed in our model is that of a POS. 
A plasma fills a space of axial length CI between two con- 
centric cylindrical electrodes. The outer electrode has ra- 
dius r, and the inner electrode has radius ri. A magnetic 
field is applied in the vacuum on one side of the plasma 
(the generator side). The magnetic field in the vacuum on 
the other side of the plasma (the load side) is assumed to 
remain zero, The magnetic field in the vacuum on the gen- 
erator side at the inner conductor is i+. We assume also 
that B = B8 and that derivatives with respect to 0 are zero. 
We choose the generator to be in the negative z direction, 
In that case, for negative polarity B < 0, while for positive 
polarity 3 > 0. 

Under these assumptions, after defining dimensionless 
parameters: 

R z N 
rz--; zs--; n= -1 

ri a n0 ’ 
b=-g,, 

I I 

CBiT earl t=- - 
4nrpoea ’ ‘*’ Bi ’ 

we obtain 

a+$f ($;b+rc?+$) -rb[--$ ,b/, (1) 

where {w,l) = 8~ a,.i-a~ aJ (Poisson brackets) and no is 
the maximum density in the plasma. We define new or- 
thogonal coordinates 6 and o, where 

gstnrz, (2) 

and o is such that Vg l Vo=O. The last condition together 
with do[z( r) ,r]/dr= (do/&) (dz/dr) + a&&=0 define 
constant o lines for r and z, satisfying 

dz ax -=- 
dr aA* 

We assume that q’a/r& 1; therefore we neglect the first 
term on the right-hand side of Eq. ( 1) and we obtain an 
hyperbolic equation for the magnetic field: 

a+ -WhbR,b, (4) 
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where G( &;w,b) E (b/r%*) C&w}. The magnetic field is 
constant along the characteristic (t,~~), with the following 
equation for the magnetic field and the characteristic: 

An initial b. value at one point of the n? = go curve, and at 
initial wo=wI( to), propagates with the velocity G( ~o,o,bo) 
along the constant to curve. 

Kulsrud et aZ.*l have pointed out that since b/n? is 
constant along an electron trajectory, a steady-state cur- 
rent distribution is usually impossible. Fruchtman** has 
shown that as a result the magnetic field evolves in time, so 
that b/n? remains constant along the trajectory of the 
electron. The present analysis shows that the magnetic field 
evolves along the n? lines [Eq. (5)]. During this evolution 
the electrons move across the n? contour lines. If a steady 
state is reached as a result of the evolution, the magnetic 
field b is constant along nr’ contour lines and the current 
and the electron trajectories are parallel to these lines. 

The velocity of propagation G(&o,b) along the char- 
acteristic is proportional to the magnetic field. Reversing 
the sign of the magnetic field (which corresponds to re- 
versing the polarity in the POS configuration) reverses the 
direction of propagation along the constant { curve. 

Knowing that the evolution is along constant g lines, 
let us assume that at one point of the co curve 
b[to,goo,w(to)l=bo and wI( t) =w[zI( t),rr( t)], where 
n14=co. Neglecting the resistive term in IQ. ( 1 ), we find 
that the propagation of b is along constant n? lines, where 
the characteristics zJ t) and rI( t) satisfy 

where n(zI,rI>rf=(o. 
Let us now assume that the field b= b. penetrates in a 

region, where it has a different value b= b- , so that a 
discontinuity is formed. The velocity of propagation of the 
discontinuity can be found by rewriting Eq. (4) as 
&R+a$=O, whereS=b2/2andR=b2/G(&w,b),andby 
integrating the new equation with respect to w in a region 
that contains the discontinuity.23 The weak solution con- 
serves the magnetic field flux as it should rather than the 
magnetic field energy. The equation for the location of the 
discontinuity is 

dad (bo-b-1 ‘%,~,b) -= 
dt 2 b * (8) 

If b- =0, the discontinuity propagates at half the velocity 
of the magnetic field, not at the discontinuity. 

The solution of the hyperbolic equation (4), is fully 
determined by only part of the physical boundary condi- 
tions (at one point of the constant 6 curve). When the 
complete boundary conditions are specified, the mathemat- 

ical problem is over determined, and a discontinuity is 
formed at one of the two ends of the constant 6 curve. AS 
is often the case, the discontinuity is removed by the resis- 
tive term. With finite resistivity the equation is not hyper- 
bolic anymore, and allows to specify the boundary condi- 
tions on both sides of E. The discontinuities are smoothed, 
permitting continuous transition from one value of b to 
another. Mathematically, the evolution of the magnetic 
field is not purely along the n? lines. When the resistive 
term is included, the shock is continuous and its structure 
depends on the resistivity. The velocity of the shock prop- 
agation is independent of the resistivity, as long as 
T’a/ri< 1. Therefore we have neglected the resistive term. 
The presence of finite resistivity, even if its value is small, 
is crucial for this shock penetration of the magnetic field. 
As we mentioned before, in the regions in which the resis- 
tivity could be neglected (outside the shock layer), b/n? is 
constant along the electron trajectories, and the frozen-in 
law is satisfied. Inside the shock layer, however, the non- 
zero resistivity is crucial, b/n? is not constant along the 
electron trajectories, the frozen-in law is not satisfied,** and 
there is a large flux penetration. 

III. PENETRATION OF MAGNETIC FIELD INTO 
UNIFORM AND NONUNIFORM CYLINDRICAL 
PLASMAS 

A. The case of plasma of uniform density 

When the density is uniform, the constant n? curves 
are constant r curves. This case has been solved in 
detai1,3>5V9 where two-dimensional geometry including con- 
ducting electrodes at the boundaries, electron heating, and 
ion motion have been taken into account. It has been 
shown there that the evolution at the bulk of the plasma is 
not affected much by the boundary conditions, and that 
near the anode (when it is made of a conducting surface) 
the magnetic field penetration is fast. The magnetic field 
evolution is very different for the two switch polarities. In 
the negative polarity case the magnetic field propagates 
from the vacuum on the generator side toward the load 
side, in the form of a shock wave of velocity cBiri/4?m3e. 
The width of the shock was shown to be cenr/?/BR, 
which should be larger than c/w,,.~ 

When the polarity is positive, the magnetic field prop- 
agates from the load side to the generator side. Therefore, 
if the plasma is initially unmagnetized, it will remain so. 
Furthermore, if the plasma is initially magnetized, there 
will be magnetic field expulsion.’ 

6. The case of plasma of nonuniform density 

When the plasma is not uniform, constant n? lines 
intersect the boundaries of the plasma with the electrodes 
and not only the boundaries of the plasma with the vac- 
uum. The difference between the magnetic field evolution 
for the two switch polarities is not as drastic as it is when 
the plasma is uniform. If there is magnetic field penetration 
along the electrodes, there is also magnetic field penetra- 
tion into the plasma. A penetration of the magnetic field 
along the cathode and the generation of a cathode sheath 
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FIG. 1. Numerically calculated magnetic field evolution in a plasma of 
nonuniform density when the polarity is negative. (a) Contour lines of 
n?: n=O.l+ (2.45.~)’ for ~~0.4, n= 1 for .z>O.4; (b) contour lines of b, 
r=O.2; (c) t=0.4; and (d) t=0.8. The magnetic field at the boundaries is 
a step function in time and ~‘a/ri=O.OO1. At the cathode, a,b=O. 

were shown to be important for the POS 
operation. 14~15~17-19 There will also be magnetic field pene- 
tration along the anode, if the anode is a conductor.’ We, 
therefore, assume that the magnetic field penetrates along 
both electrodes. As we will show here, the magnetic field 
penetration along the anode is more important for the field 
penetration into the bulk of the plasma. 

In Fig. 1 (a), the n? contour lines are shown for a 
particular density profile. In Figs. 1 (b)-1 (d), the magnetic 
field penetration in a negative polarity case is shown for the 
density profile that is shown in Fig. 1 (a). Near the plasma 
boundary on the left side, where the magnetic field is ap- 
plied (the generator side), there is a region of a nonuni- 
form density. To the right of that region the plasma density 
is uniform. A magnetic field b= 1 is applied at t=O on the 
left boundary. The magnetic field at the boundary on the 
right is assumed zero. We assume an infinitely fast pene- 
tration of the magnetic field along the anode. At the cath- 
ode, on the other hand, the radial derivative of the mag- 
netic field is assumed zero. This is a numerical solution 
that also includes resistivity. The boundary condition at 
the cathode makes the resistive solution different from the 
nonresistive solution that propagates along the constant 
n? characteristic. Far from the cathode the evolution is 
along constant n? lines, and the solution becomes the fa- 
miliar one in the uniform region. 

The “S-shaped” structure in Fig. 1 (b) is due to the 
nonmonotonic-in-z radial velocity of the field propagation, 

which is a result of a nonmonotonic-in-z dependence on 
(d/dz) ( l/n) for the particular density profile of Fig. 1 (a) e 
In a realistic density profile at the plasma-vacuum bound- 
ary, the dependence is usually monotonic, and the “S- 
shaped” structure is not expected to appear. However, 
such a “S-shaped” structure is a true physical phenomenon 
that could occur in reality whenever a region of nonuni- 
form density exists in the plasma between two regions of a 
more uniform density. 

IV. REALISTIC DENSITY PROFILE 

We assume now a realistic density profile of the form 

n=f(zV, (9) 

where f(z) is assumed to decrease toward the vacuum- 
plasma boundaries. The density profile in actual experi- 
ments depends on the preparation of the plasma. We 
choose as a particular example a trapezoidlike plasma in- 
jection from the cylinder axis, and consequently we assume 
that -2<a<-1. From Eqs. (2) and (3), we obtain 

s 
f 12 

W= -dz-- 
df/dz aa+ ’ 

From Eqs. (6) and (7) we find that the propagation along 
constant 6 is given by 

dzr bo(a+2) -= 
dt c ’ 

(10) 

do boCdf/dd 
x=- pf’ * (11) 

Note that along constants 5, dz,/dt is also constant. This is 
a result of the particular choice of the density radial de- 
pendence, and simplifies the calculations considerably. We 
now assume 

f (2) = [ 1+4(e-- 1) (Z-f,“]. (12) 
There is a discontinuity in the density at the vacuum- 
plasma boundary, when taking E#O, which is only an ap- 
proximation for the density profile. Also note that f (z=f) 
=l. 

Suppose that at the boundaries (either with the elec- 
trodes or with the vacuum) a magnetic field b= ho(g) is 
specified, which propagates along constant c. Equations 
( 10) and ( 11) are integrated to give 

q(t) = 
bo(a+2)t 

g 
szo, (13a) 

where for positive polarity, 

for z< f , 

e/G’ -1 d z”= 4(e-1) +OS, for z>i. (13b) 
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For negative polarity the values of ze for z > f and z < 4 are interchanged. When z0 becomes greater than unity or less than 
zero in Eq. ( 13b), the constant n$ lines end at the vacuum-plasma boundaries, and ze is unity or zero, respectively. The 
evolution in time of rr(t) is 

( 
s 

i 
l/(a+2) 

Q(G = 
l- [ - (2&&9 &&+2)sgn(;-z)t+Y]2 

f (14) 

where for positive polarity, 

v=- JT$, for z<& 

and 

v= Jw, for z>f. 

Again, for negative polarity the values of v for z> 5 and 
z < i are interchanged. Equation ( 14) follows the relation 
~[q(~Lq(~)l~(d =6. 

V. VARIOUS BOUNDARY CONDITIONS 

As mentioned in the Introduction, the evolution of the 
magnetic field near the electrodes requires a separate study. 
We assume here that the magnetic field penetrates along 
the electrodes, as suggested by various models. As bound- 
ary conditions, we specify the magnetic field at all the 
plasma boundaries. Moreover, we assume that the field 
penetration along the electrodes is very fast, and therefore, 
for simplicity, we take the value of the magnetic field at the 
electrodes to be the product of two functions; one that is 
only time dependent and one that is only coordinate de- 
pendent. 

We examine the evolution of the magnetic field due to 
various time behaviors of the magnetic field at the bound- 
aries. The magnetic field at the boundaries is assumed to be 
b= 6,( t) at the generator side, b=O at the load side, 
b=b,(t)(l--fi) at the outer electrode, and 
b=b,( t) ( 1 -P) at the inner electrode. 

We also assume that the plasma is initially unmagne- 
tized. We define h(zc) for positive polarity to be 

h(ze)=l-z;, z&, 

=2 h(z,) = 1 -z. , z*4, 

while for negative polarity, it is defined as 

h(zc)=l-z& Z&f, 

h(z,)=l-22 z&. 

For all cases, the method used to find the magnetic 
field evolution is the same. At each point in the plasma 
region ( r,z) , the value of 6 = c( r,z) = n ( r,z> ? is found, and 
then, using Eq. ( 13b), ze( c) is also calculated. For a time 
t, it is checked whether the wave has reached this point. 
The value of the magnetic field is calculated by finding the 
value that the field had at the boundary at a time At(r,z,t) 
(to be found), knowing that the field has propagated for a 
time t - At( r,z,t), according to Eq. ( 13a). The equation for 
At( r,z,t) becomes 
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[t-At(r,z,t)]6,[At(r,z,t)] [h(z,)l F= (z--zo). 

(15) 

On the other hand, the velocity of propagation of the wave 
front, where a discontinuity exists, is found by equating the 
propagation of the discontinuity due to a magnetic field at 
time Atf at the boundary [Eq. (S)] and the propagation of 
a continuous wave with the same magnetic field [Eq. 
(13a>]. The equation for At, is 

[t-At#) ]b,[Atf(t) ] =f Jb’ kWfWldt’. (16) 

The left-hand side of the equation results from the contin- 
uous propagation equation [Eq. ( 13a)]; the right-hand side 
results from the discontinuity propagation equation [Eq. 
(811. 

We now analyze several cases. Case A is of a magnetic 
field that is switched at the plasma boundaries as a step 
function. The evolution of the magnetic field in the plasma 
is calculated. Case B is the steady-state magnetic field dis- 
tribution in the plasma for the magnetic field that was 
specified on the boundaries in case A. Case C is the mag- 
netic field that rises linearly in time at the plasma bound- 
aries. Case D is of a nonmonotonic behavior of the mag- 
netic field. To enable analytical calculation the magnetic 
field is assumed first to rise linearly in time and then to 
decrease linearly in time. The time evolutions of the mag- 
netic field at the boundaries in the various cases is shown in 
Fig. 2. 

A. Magnetic field switched on as a step function in 
time 

In this case b,(t) = f O( t), where 0 is a step function. 
From here on the upper sign refers to negative polarity 
while the lower sign refers to positive polarity. The solu- 
tion for the magnetic field in this case is 

(17) 

The wave front ,$(t,,$) propagates as 

zp+3 = 
h(z,)(a+2)t 

q. +zo- (18) 
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%! I nr2 Conlour Lines 

FIG. 2. Illustration of the time behaviors of the magnetic field at the 
boundaries for cases A-D. 

The radial location of the front S, is found from the rela- 
tion f;=n(+,z”f) (6)‘. Here A$=t/2. 

FIG. 3. The n? contour lines of the density profile assumed in all the 
numerical examples that follow ( e=O.3 and CY = - 1.5). 

B. Steady state 

We assume that the field is switched on at the bound- 
aries as a stepfunction in time (as in the previous case). 
After enough time the field in the plasma reaches a steady 
state. The discontinuities of the magnetic field correspond 
to i&mite current densities and infinite electric fields. Fi- 
nite resistivity should resolve most of the singularities. 

C. Magnetic field linearly rising in time 

In this case b,(t) = it/to. Let us define AE At/t, and 
k t/to . According to Eq. ( 15 ) , the magnetic field is 

b”(st,<) = *AWzo)@[ d(zff(t,6) -41, (19) 

where AT=@+ t?)/2, and W=(z-zo)Q (a 
+2)to[=th(zo)] (note that W>O). 

The velocity of propagation of the front is found from 
Eq. (16). It is easy to see that the solution for this equation 
is 

(20) 

field at the boundaries rises linearly in time (case C), with 
a rise time to = 2. The maximum value of b in both cases is 
the same. 

D. Magnetic field linearly decaying in time after a 
linear rise time 

In this section we study the magnetic field evolution in 
a plasma in which the magnetic field at the boundaries is 
nonmonotonic in time, first it rises, and then decreases. We 
show that during the decrease of the current interesting 
physical processes occur, such as reversal of the current 
direction in certain regions in the plasma, followed by ion 
deceleration in those regions. Although this time at which 
the current decreases is of less interest for the operation of 
the POS, understanding of the processes that occur at this 
time could help the understanding of the processes that 
occur during the previous time during which the current 
rises. In fact, in a recent POS experiment at the Weizmann 
Institute there were indications that ions decelerate during 
the current decrease.24 Our calculations propose that the 

Magi-relic PIeId Conlaur trnes Magnetic Fteld Conkour Lines 

zp =&F2&[ dz(z,)] (a+21 -+zo. g 
Again, 5 is found from the requirement n (G ,$) ($“f> 2= 5. 

Figure 3 shows the n? contour lines of the density 
distribution that is used in all the numerical examples that 
follow. The density parameters are chosen to be a= - 1.5 
and e=O.3. 

Figure 4 shows the distribution of the magnetic field, 000 025 050 075 loo 000 025 0% 075 

as found analytically by the method described above, at (al I 04 z 
time t=0.2, when the polarity is negative. Figure 4(a) 
shows the distribution when the magnetic field at the FIG. 4. Analytically calculated magnetic field evolution in a nonuniform 

plasma boundaries is applied as a step function (case A), 
plasma (the density profile shown in Fig. 3), for negative polarity at 

while Fig. 4(b) shows the distribution when the magnetic 
t=0.2. The magnetic field at the boundaries (ct =ca= 1) is (a) a step 
function in time (case A); and (b) rising linearly in time (case C, tee2). 
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magnetic field penetration could cause such deceleration. 
A more quantitative comparison with the experiment will 
be made in the future, when the measurements are com- 
pleted. 

We choose a time behavior of the magnetic field at the 
plasma boundaries that only approximates a realistic be- 
havior, but enables us an analytic calculation. We assume 
that the field rises linearly and reaches a maximum value at 
t= to, after which it decreases linearly. The evolution of the 
magnetic field at the electrodes is therefore assumed to be 

be(?) = ~:i; 7-c 1, 

b,(3==[1-p(T--1)], 61. 

We refer only to times at which the magnetic field is pos- 
itive. 

For 1 < t< i, in the region where A? (as calculated in 
the case of linearly rising magnetic field) is larger than 1, 
or for t > ! in all the plasma, the linearly decreasing b at the 
electrodes determines the evolution of the magnetic field. 
Following the same steps as in the previous case (C), we 
obtain 

Aid= 
l&+1+7+ J(l/~+1+~)2-(4/P)[--+~l+~)] 

2 (21) 

Note that case C is recovered when p= - 1. The magnetic 
field is 

bd(z,i;()=dz(zo)[ l-p(A@-1)]6[ r(zdf(?;{)-z)]. 
(22) 

For 7> $ the solution for Atf is no longer A$. The equation 
for the front propagation becomes 

1 
=- 

2 
[ l-/~[h?$‘) - 11s. 

The solution for A?d( t) is given in the Appendix. The wave 
front propagates as 

~$7) = [LAld,(7)] [ 1 -,~(A?df(?) - l)]h(z,) F, 

4 
75 5. (24) 

Figures 5 and 6 show the magnetic field evolution when the 
polarity is positive. Figure 5 shows the magnetic field dis- 
tribution when a steady state is reached (case B). The 
arrows show the direction of the electron flow. Figures 
6(a) and 6(b) show the magnetic field distribution at 
t=0.666 and at t=g * 0.666, respectively, when the mag- 
netic field is applied at the boundaries as a step function. 
Figures 6(c) and 6(d) show the distributions for the lin- 
early increasing in time magnetic field (case C) for T= 1, 
and for the nonmonotonic-in-time magnetic field at the 
boundaries (case D) for 7=$, where t,=O.666, respec- 
tively. These times are the same times as in Figs. 6(a) and 
6(b) (at 7= 1, case C and case D are identical). As ex- 
pected, the fastest penetration is in the step function case 
(A). We also see that the gradient of the magnetic field is 
nonmonotonic in space. Therefore, there also exist regions 
where the direction of the electron flow is from the anode 
to the cathode. Such regions can appear because of the n? 
configuration (case C), but also when the applied magnetic 

field decreases (case D) . As is shown in the next section, in 
such regions the force that is exerted on the ions is toward 
the generator. Ions that are being pushed toward the load 
would slow down and might even be pushed toward the 
generator. 

VI. ION MOTION 

In our model we have assumed that the plasma push- 
ing is negligible. In this section we calculate the ion veloc- 
ities and displacements that result from the field evolution 
calculated in our model. If these velocities and displace- 
ments are indeed negligible, it justifies a posteriori our ini- 
tial assumption. 

We assume that the ions are accelerated due to an 
electric field E= (JXB)/enc, and that their displacement 

Magnetic Field Con tour Lines 

I.OOj \ . , I ) I , ‘-jlr_ \, 

0.00 0.25 0.50 0.75 I. '0 
Z 

FIG. 5. The steady-state magnetic field distribution in a nonuniform 
plasma (the density profile is shown in Fig. 3) for positive polarity (case 
B, c2=3; and c,=l). 
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FIG. 6. Magnetic field evolution in a nonuniform plasma (the density profile shown in Fig. 3) for positive polarity. The magnetic field at the boundaries 
(c,= I, c2=3) is (a) a step function in time (case A) at t=0.666, (b) at t= g-0.666, (c) is rising linearly in time (case C, t,=O.666) at t=0.666, and 
(d) nonmonotonic in time (case D, t,,=O.666, /I= 1) at t= s.O.666. 

is negligible. In terms of dimensionless variables we obtain 

d2zion 4re2rfno b a$ 
-z-=- C2.Mj 7’ (25) 

d2con 4?re2r,mo b a# 
dt=- YiG&-7’ (26) 

where Zion and rion are the ion axial and radial displace- 
ments and Mi is the ion mass. The velocities acquired by 
the ions result from two kinds of electric fields. The first 
kind of electric field is a slowly varying weak electric field 
that exists behind the front, where the current density is 
low. This electric field exerts force on the ions for a long 
period of time. The second kind of electric field is the 
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strong electric field at the shock front. This electric tield 
exerts a strong force on the ions, but for a short period of 
time only, because of the fast propagation. 

The ion velocity and displacement due to the weak 
electric field are found by solving numerically Eqs. (27) 
and (28). The right-hand sides of the equations are calcu- 
lated using the values of the magnetic field that were found 
in the previous sections. In all the calculations we assume 
that the ion motions are small, so that we approximate the 
electric fields that the ions experience by the electric fields 
in their initial positions. 

We cannot calculate the ion velocities and displace- 
ments that result from the electric fields inside the shock by 
solving Eqs. (27) and (28)) because in our solutions the 
shocks appear as discontinuities of the magnetic field. The 
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RG. 7. Ion velocities and displacements that result from the magnetic field evolution shown in Fig. 6(a) (case A), at ?=0.666 (?= 1). The parameters 
are B,= 10 kG, n,,= 10” cme3, Mi= 12MP (MP is proton mass) a=6 cm, r,=2.5 cm, r,=5.0 cm, and T=20 nsec. (a) V,,,,, (b) r,,, , (c) V,O,,z, and 
Cd) 2-n. Velocities are in units of 10’ cm/xc, r,O, is in units of 4X lo-?,, and q,,, is in units of 2X lo-’ a. 

velocities acquired inside the shock can be estimated by 
assuming that the time S that an ion spends inside the 
shock is so short that the shock velocity V, can be consid- 
ered constant. In the rest frame of the shock the ion climbs 
an electrostatic potential B2/8me, and acquires the veloc- 
ity Vion,~2: Vi/2 V,, where VA = ( B2/4~nMi) I”, and it is 
assumed that VA< V, . The quantities here are in cgs units. 
The ion displacement, during the time that an ion spends 
inside the shock, is of the order of Vi,, , @ /3, which is 
negligible. 

In Figs. 7-9 the ion motion that results from the mag- 
netic field evolution in a positive polarity POS is shown. 
The density profile is shown in Fig. 3 and the calculations 
are made for the various cases presented in Fig. 6. We 
chose positive polarity for the numerical example, since in 
this case the field penetration is smaller than in the nega- 
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tive polarity, and therefore the ion motion is expected to be 
larger. The main observation is that the plasma ions 
(which are assumed singly charged carbon ions) acquire 
only small velocities during the 20 or 30 nsec of field evo- 
lution, and that their displacements are small relative to 
the plasma dimensions. This result justifies a posteriori our 
assumption that the ion motion is negligible. 

The ion motion is not negligible in certain regions in 
the plasma, where large quasistationary gradients of the 
magnetic field may cause large plasma pushing. Examples 
are the ion radial displacements at z=O.5 near the anode 
[Figs. 7(b) and 8(b)], and the ion axial displacement at 
z= 0 near the cathode [Fig. 8 (c)l. Our model is not valid in 
these regions. 

The figures show the ion motion at 20 and 30 nsec. 
Later, the magnetic field evolution is slower and the ion 
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FIG. 8. Ion velocities and displacements that result from the magnetic field evolution shown in Fig. 6(c) (case C), at r=0.666 (T= 1). Here Bi= 10 kG, 
F;8:01icrn-‘, Mi= 12M, (MP is proton mass), a=6 cm, r,=2.5 cm, r,=5.0 cm, and T= 20 nsec. The units of velocity and displacement are as in Fig. 

ton,rr (b) rnon, CC) Yion,zs ad Cd) Zion. 

motion becomes more significant. Our calculations show 
therefore that even in a positive polarity POS, there is a 
substantial period of time (a few tens of nsec), in which the 
dominant process is the field penetration. 

We also observe that there are regions in the plasma 
where the ion velocities decrease during the decrease of the 
magnetic field at the boundaries. Figure 8 (a) shows the ion 
radial velocities at T =20 nsec, the time at which the field 
at the boundaries reaches its maximum. Figure 9 (b) shows 
the radial velocities at T = 30 nsec, when the magnetic field 
at the boundaries decreases. It is seen in the figures that the 
velocities near the anode are smaller at the later time. This 
is a result of the nonmonotonic-in-space magnetic field [see 
Fig. 6(d)], and of the electric fields that point toward the 
anode. The ions are decelerated in those regions. 
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VII. CONCLUSIONS 

In this paper we studied the magnetic field penetration 
into a plasma in the POS configuration. We have shown 
that while in a cylindrical plasma of a uniform density the 
magnetic field penetrates in negative polarity only, in a 
cylindrical plasma of a realistic nonuniform density the 
penetration occurs in positive polarity as well, as long as 
there is magnetic field penetration along the electrodes, 
This is because when the density is nonuniform, the n? 
contour lines, along which the magnetic field propagates, 
intersect the electrodes. In the numerical examples, we 
have shown that even in a positive polarity POS, there is a 
substantial period of time (a few tens of nsec for the pa- 
rameters that we chose), during which the dominant pro- 
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FIG. 9. Ion radial velocities at T= t (t0=0.666) that result from the 
magnetic field evolution shown in (a) Fig. 6(b) (case A), (b) Fig. 6(d) 
(case D, p= I), Bi= 10 kG, n,,= 10” cmm3, M,= 12M, (Mp is proton 
mass), a=6 cm, ri=2.5 cm, r,,=S.O cm, and the units of velocity are as 
in Fig. 7. The time is T=30 nsec. 

cess is the field penetration, and the ion motion is small. 
Contrary to the negative polarity, however, in the positive 
polarity the magnetic field usually penetrates into the 
plasma on the generator side only, and is not expected to 
reach the plasma boundary on the load side. Thus, in a 
positive polarity POS, after the initial phase of field pene- 
tration, a second phase of plasma pushing by the magnetic 
field may exist, prior to a power delivery to the load. 

Our model is based on several approximations. A more 
accurate model that treats the non-neutral sheaths near the 
electrodes’7 and the mutual effects of field penetration and 
electron heating’ may modify the results. In addition, as 
has been recently demonstrated, ion motion may also in- 
duce field penetration.13 

APPENDIX: SHOCK FRONT PROPAGATION FOR 
CASE D 

The solution for the front propagation of case D is as 
follows. By differentiating Eq. (23)) we obtain 

dA$(?) 1 1 +,u-p A$(8 -= -- 
dT 2 2~A~(?)-~G(l+,u) 

We exclude the case p=O, for which the last equation has 
the solution A$(?) =?72+f (this is the case of a constant- 
in-time value of b at the boundary, after a linear rise in 
time). Defining 

g=A$+a, w=T’+b, and p=g/w, 

where a=-(l+p)/p; b=-(l+p)&, 

we obtain 

ap t-P+3 2P 

Waw= 2p-1 * 

This equation has a special solution, A$( 7) = $ for ,u = - 1 
(recovering case C) . Otherwise, it leads to a cubic equation 
forp~CA?df(~-[(l+~L)/~l)/~-(l+~)/~): 

( p3-:p2j = (y/wj3. 

From the requirement that AT(!) = 1, it follows that 
y= - ( 1/41’3 P)(l+P) - 1’3 Defining zr - (y/w) 3, we find 
that p has only one- real root ~(7) =S+ +S- + 4, where 
s*= v -Z/2 + 1/43 f ?/4-g/4f. Finally, we obtain 

‘A. S. Kingsep, Yu. V. Mokhov, and K. V. Chukbar, Sov. J. Plasma 
Phys. 10, 495 (1984). 

‘A. Fruchtman, Phys. Fluids B 3, 1908 (1991). 
‘A. Fruchtman, Phys. Fluids B 4, 885 (1992). 
‘C. W. Mendel, Jr., Phys. Rev. A 27, 3258 (1983). 
5A. Fruchtman and K. Gomberoff, Phys. Fluids B 4, 117 ( 1992). 
6Ya. L. Kalda and A. S. Kingsep, Sov. J. Plasma Phys. 15, 508 (1989). 
‘C. R. Devore, J. M. Grossmann, and P. F. Ottinger, Bull. Am. Phys. 
Sot. 37, 1564 (1992). 

‘R. J. Mason and P. L. Auer, Bull. Am. Phys. Sot. 37, 1564 (1992). 
9A. Fruchtman, Phys. Rev. A 45, 3938 (1992). 
“L. I. Rudakov, C. E. Seyler, and R. N. Sudan, Comments Plasma Phys. 

Controlled Fusion 14, 171 (1991). 
“B. V. Oliver, L. I. Rudakov, R. J. Mason, and P. L. Auer, Phys. Fluids 

B 4, 294 (1992). 
“C. E. Seyler, Phys. Fluids B 3, 2449 (1991). 
13A. Fruchtman and L. I. Rudakov, Phys. Rev. Lett. 69, 2070 ( 1992). 
“C. W. Mendel, Jr. and S. A. Goldstein, J. Appl. Phys. 48, 1004 (1977). 
“B. V. Weber, R. J. Commisso, R. A. Meger, J. M. Neri, W. F. Oliphant, 

and P. F. Ottinger, Appl. Phys. Lett. 45, 1043 (1984). 
16A. Fruchtman and K. Gomberoff, Phys. Fluids B 5, 2371 ( 1993). 
17P. F. Ottinger, S. A. Goldstein, and R. A. Meger, J. Appl. Phys. 56,774 

(1984). 
‘*C. W. Mendel, Jr. (private communication, 1989). 
19C. K. Ng and R. N. Sudan, J. Appl. Phys. 69, 137 (1991). 
*OR J Mason, M. E. Jones, J. M. Grossmann, and P. F. Ottinger, Phys. . 

Rev. Lett. 61, 1835 (1988). 
*‘R. Kulsrud, P. F. Ottinger, and J. M. Grossman, Phys. Fluids 31, 1741 

(1988). 
**A. Fruchtman, Phys. Fluids B 4, 3446 ( 1992). 
*‘F. John, Partial Diarential Equations (Springer-Verlag, New York, 

1971), p. 18. 

2851 Phys. Fluids B, Vol. 5, No. 8, August 1993 K. Gomberoff and A. Fruchtman 2851 

Downloaded 04 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



“See National Technical Information Service Document No. PB92- Conference on High Power Particle Beams, Washington, DC, 1992, 
206168 (M. Sarfaty, Ya. Krasik, R. Arad, A. Weingarten, Y. Maron, edited by D. Mosher, G. Cooperstein, and V. Granatstein, Washington 
and A. Fisher, Spectroscopic investigations of plasma opening switch us- DC, 25-29 May 1992). Copies may be ordered from the National Tech- 
ing a novel gaseous plasma source, Proceedings of the 9th International nical Information Service, Springfield, Virginia, 22161. 

2852 Phys. Fluids B, Vol. 5, No. 8, August 1993 K. Gomberoff and A. Fruchtman 2852 

Downloaded 04 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


